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Abstract. In this article, we present the results of an exploratory study
conducted with our self-developed tool Artist. The goal of the tool is
to give formative feedback to develop students’ argumentation skills. We
compare the feedback that two different LLMs, an open-sourced one by
META and one of OpenAI’s fully proprietary ones, give to students’
argumentative writing. We find that, overall, students find the feedback
provided by both LLMs helpful (7.51 vs. 7.65 on a scale from 1 to 10),
and they rate the quality of the feedback as good to very good. We take
this as a very encouraging provisional result that invites larger and more
extensive studies on the topic.
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1 Introduction and Relevant Previous Research

Argumentative writing support aims to improve students’ argumentative skills.
By learning how to develop strong arguments, students also practice and improve
critical thinking skills, counting among the so-called 21st-century skills [16].

Developing these critical thinking skills requires a close supervision by an
experienced teacher: Receiving regular, high-quality feedback can help students
to improve their argumentative writing skills. However, this is resource-intensive
and, for some settings, including massive open online courses, simply impossi-
ble. Therefore, it is desirable to support teachers in the task of providing such
feedback to students. This is one of the core tasks of argumentative writing sup-
port, a subfield of writing support, which in turn belongs to Natural Language
Processing (NLP).

For an overview of recent developments in this field, see [6]. For a recent
study of scaling attempts of writing feedback, see [12]. For a recent study on
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the effects of computer-generated feedback on overall writing quality, see [14].
Within this field, our approach focuses on a text’s argumentative structure, and
it builds on argumentative analysis approaches that decompose and/or classify
text units and their most important components, usually claims and premises,
and then assess the quality of the essay based on this structure. For a recent
approach using this paradigm, see [2]. For the most important recent survey of
the field, see [18]. For the field’s connection to natural language inference (NLI),
see [8].

With the advent of highly successful generative large language models (gen-
erative LLMs) such as gpt-3.5-turbo and gpt-4, which power ChatGPT, a very
promising new path to this goal of aiding students in developing their argumen-
tative writing abilities has entered the field. LLMs are a kind of neural network
methods in NLP, as opposed to rule-based or Good Old-Fashioned (GOFAI)
approaches. Inspired by the transformer architecture [17], researchers developed
a number of influential natural language understanding (NLU) architectures as
well as training routines, pioneered by the BERT architecture [5]. The trans-
former architecture has also inspired GPT-3 [3], which in turn grounds the
models powering ChatGPT.

Unfortunately, OpenAI, the company that has released ChatGPT in Novem-
ber 2022, has decided to contradict current practice in the field and refused to
publish any important details on its models and its training, let alone the model
weights themselves, while it has communicated that its models are based on the
GPT-architecture [1].

Furthermore, with regard to OpenAI’s proprietary models, concerns over
data protection have alerted watchdogs in many countries, including Poland,
the Netherlands, Canada, and Italy.1 Recently, these privacy worries have been
complemented by lawsuits2 around potential intellectual property violations.
Finally, the sheer size of the LLMs served by OpenAI implies that every request
sent to ChatGPT also exerts a considerable carbon footprint: all other things
being equal, a larger model requires more resources to process a request3.

This creates an uncomfortable situation for universities: it is their mission
to equip young people with cutting-edge knowledge and competencies, but they
are also required to comply with national laws, including data protection laws,
to foster open science, and to reduce their carbon footprint. Fortunately, with
the recent surge in smaller open generative LLMs such as the ones released by
Meta AI (see below, Sect. 3), a new option has entered the field. On paper, these
models are extremely promising. They perform comparably to OpenAI’s models
at standardized benchmarks, but unlike those, they are relatively small, openly
available, and pose no privacy issues, as they can be run on local hardware.

1 See Reports by Reuters on Poland, the Netherlands and Canada, by the Financial
Times on Italy.

2 See Report by AP News. All links last consulted on January, 19th 2024.
3 Unfortunately, it is impossible to even venture an educated guess on the specific
extent of the carbon footprint of one request sent to ChatGPT, see [10].

https://www.reuters.com/technology/poland-investigates-openai-over-privacy-concerns-2023-09-21/
https://www.reuters.com/technology/dutch-privacy-watchdog-seeks-information-openai-flags-concerns-2023-06-07/
https://www.reuters.com/technology/canada-launch-probe-into-openai-over-privacy-concerns-2023-05-25/
https://www.ft.com/content/3ce7ed9d-df95-4f5f-a3c7-ec8398ce9c50
https://apnews.com/article/openai-new-york-times-chatgpt-lawsuit-grisham-nyt-69f78c404ace42c0070fdfb9dd4caeb7
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In this paper, we provide a first exploration of the promise of open, locally-
run LLMs in the task of argumentative feedback support provision. We provided
first-year university students who are enrolled in an academic writing class with
the opportunity to obtain feedback on argumentative texts from two different
LLMs. We wanted to assert whether (1) students considered this feedback helpful
at all, and (2) whether the small, open, and locally deployed LLM is perceived
as equally helpful as OpenAI’s ChatGPT. Answering both of our research ques-
tions affirmatively constitutes an important first insight on the performance of
open, smaller, and locally run LLMs compared to OpenAI’s models in the wild.
Rather than evaluating on generic benchmarks, we tap directly into a real-world
classroom scenario and let the students compare the two models side-by-side.

2 Our Argumentative Feedback Tool: Artist

For our experiment, we rely on our tool Artist4 (see [4]). The main purpose of
Artist is to provide students with insight into their argumentative texts. Based
on results gathered from a prior user survey, we split the provided analysis into
three categories for a better overview. When a user opens Artist, they are
prompted to type their argumentative text in a designated field or to select one
of three example texts used for demo and survey purposes. In the next step, they
may choose from three different analytic dimensions:

(1) Argument Structure Analysis: uses a random forest classifier to identify argu-
mentative components and visualize their structure in the form of a graph
(this part of the tool builds on [19]);

(2) Discourse Structure Analysis: uses an RST parser [7] to analyze the rhetorical
structure of the text;

(3) Improvement Suggestions: lets the user send their texts to an LLM and receive
suggestions on how the argumentative quality could be improved. We have
incorporated two options:
(i) llama-2, a self-hosted instance of meta-llama/llama-2-70b-chat-hf,
(ii) gpt-3.5 that sends the request to gpt-3.5-turbo via OpenAI’s API.
The responses from the models are presented to the user in a textual form.

The Improvement Suggestions part of the tool is the main focus of this paper.
The experiment takes largely place in this part of the tool.

In sum, our approach seamlessly embeds both a commercial LLM accessed
with an API and an open LLM running on our infrastructure into a tool that
aims at aiding students in their argumentation by providing formative feedback.

3 Set-Up of Exploratory Experiment

Technical Aspects. For the experiment we are relying on the self-developed tool
Artist that is available via a web interface5. The focus of our experiment was
4 Code and screenshots available at https://gitlab.com/ds-unisg/aied2024.
5 https://artist.datascience-nlp.ai.

https://gitlab.com/ds-unisg/aied2024
https://artist.datascience-nlp.ai
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a new addition to our tool, namely the ability to receive text-specific feedback
regarding the argumentative quality from two different LLMs. In order to reduce
the bias of the participants for the study, we simply call them “Model 1” and
“Model 2” respectively.

From among OpenAI’s proprietary models, we evaluated the version of so-
called gpt-3.5-turbo (in what follows gpt-3.5 ) available via the API during our
experiments in October 2023. In stark contrast to OpenAI, the AI research group
of META (formerly Facebook AI) has decided to publicly release its latest series
of LLMs [15], allowing for reproducible and rigorous scientific experimentation
with these models. We use their model called meta-llama/llama-2-70b-chat-hf
(in what follows abbreviated by llama-2 ), which we serve using the very efficient
serving method vLLM [9]. To the best of our knowledge, we are reporting on the
first experiment to deploy this framework in a real-life educational setting. We
give an overview on the differences between the two models tested in Table 1.

Table 1. Comparison of the two models used in our explorative experiment.

Model Size Serving Method Open? Privacy Concerns?
llama-2 70B locally on 8 GPUs of a

NVIDIA DGX-2 via
vLLM

yes none (runs locally)

gpt-3.5 175B remotely via OpenAI
API

no multiple (see Sect. 1)

We use two different prompts to interact with the models, as they react
differently to the same prompts. Following is the prompt for OpenAI’s gpt-3.5 :

“Please give two short suggestions for improving the argumentative quality of
the following Essay:” + input text

Following is the prompt for llama-2 :

“[INST] You are an argumentation expert and an experienced teacher that loves
to give helpful and encouraging advice to students. You always respond in short,
concise, well-formed sentences, and you are also creative. You receive the stu-
dent’s text from me, which has already been analyzed with Discourse Structure
Analysis. Referring to very specific elements of the text, you give the student two
specific tips on what they could improve about the text in terms of argumenta-
tion. Please try to be as specific and supportive as possible giving two formative
and instructive feedbacks and nothing more in 2-3 sentences. Here is the text: ”
+ input text + “[/INST]”

As can be seen, the prompt used for llama-2 is much more sophisticated than
the one for gpt-3.5. We found that more detail is necessary to obtain good results
from llama-2. However, we applied the same purely formal routine to determine
the prompt. We started with identical prompts and then continued to develop
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the prompts until the following formal requirements had been met by returned
feedback: (1) the language of the response is English, (2) the entire response
fits into the space allocated to the answer window of 240 tokens, (3) the model
gives exactly two suggestions (where we did not investigate the quality of the
suggestions, just the count of two).

While gpt-3.5 fulfilled these three formal criteria with the original version of
the prompt, llama-2 required more information to do so. We hypothesize that
this is due to the more extensive reinforcement-based fine-tuning that went into
OpenAI’s product.

Participants. A total of 63 students participated in our study. All of them were
first-year university students who had almost completed the course for academic
writing. The course includes several cycles of peer review, thus the students were
experienced in both giving and receiving formative feedback. All of the students
were enrolled in the same general study program that then allows them to study
for a variety of degrees in business administration and social sciences. 66% of the
participants were male, 32% female, and 2% preferred not to state their gender.
The first language of 89% was German and for 3% English. In regards to the
age, we observed a higher variability. The youngest participant(s)’s age was 17
and the oldest(s)’s 37 with an overall (rounded-up) mean of 20.

Table 2. Results of LLM-specific questions (name of LLM that has a higher percentage
of strongly or somewhat disagree (question 1) or agree (questions 2 and 3) printed in
boldface, all values in [%]).

Question Model Strongly
disagree

Somewhat
disagree

Neither
nor

Somewhat
agree

Strongly
agree

Loading answer took
too long?

llama-2 41.27 31.75 14.29 9.52 3.17

gpt-3.5 46.03 25.40 17.46 9.52 1.59
Understood the
recommendation?

llama-2 1.61 3.23 9.68 37.10 48.39

gpt-3.5 0.00 4.84 9.68 50.00 35.48
Was the feedback
useful?

llama-2 1.59 4.76 12.70 46.03 34.92

gpt-3.5 0.00 3.17 11.11 44.44 41.27

Details on the Process. The experiment was conducted in class on October 20th,
2023, in a course that introduces students to the basics of scientific writing,
such as correct referencing, composition, topic selection, and argumentation. The
entire class lasted for 90min and was dedicated to the topic of argumentation.
The experiment itself was conducted within this class and took approximately
15min. The participants were asked to complete a questionnaire about the utility
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of the entire tool with a clear focus on the recommendations of the two LLMs.
Participants in the experiment had one web browser window open with the
questionnaire and another one with the tool. To have more control over the
variables of the experiment, we randomly chose three texts from a well-known
dataset [13] that the students used to obtain the LLMs’ feedback.

4 Results and Discussion

Results. In Table 2, we give the results of the LLM-focused questions of our
experiment. The table shows that llama-2 receives slightly better scores with
the first two questions (note that the difference regarding the second question is
only 0.01%), while gpt-3.5 significantly outperforms its competitor in question
3. Figure 1 depicts the distribution of participants’ responses to the question:
How do you perceive the received feedback quality of Model 1 and Model 2? Rate
the two Models on a scale of 1 to 10, where 10 is the highest value and 1 is the
lowest value. The figures show that (1) both models are perceived as helpful, and
(2) the specific scores of the two models are very close (average for llama-2 7.51,
for gpt-3.5 7.65). This means that the quality of the feedback provided by the
two models was perceived as good to very good, and almost on a par.

Discussion. We emphasize three aspects of the results of our study. First, the
perceived quality of the feedback is remarkable. It was not to be expected that
general-purpose LLMs with no specific fine-tuning for giving feedback on argu-
mentative texts would perform so well. The task is very difficult, as it requires a
combination of strict, logical modes of linguistic abilities with associative, topi-
cal modes of abilities. The vast majority of participants — over 80% at the least
— understood the recommendation and found it useful. Furthermore, on a scale
of 1 to 10, students ranked the quality of the feedback above 7.5 on average.
Bearing in mind that even feedback by experienced human teachers would not
get a straight 10,6 it is clear that this is a very good score.

Second, it is surprising that llama-2 is competitive with gpt-3.5 throughout
the experiment, and that our serving method outperforms OpenAI’s API in
terms of response time. Given that OpenAI’s model is 2.5 times the size of llama-
2, and given that only the former has been extensively fine-tuned using human
feedback and a special flavor of reinforcement learning [11], it would not have
been rational to expect that the models are almost on a par at this complex task.
From a research-political as well as from an environmental perspective, this is
encouraging: open-source models can compete with highly resourced proprietary
models even at very challenging tasks. And the fact that the model is 2.5 times
smaller will, roughly, reduce its carbon footprint per processed request by the
same factor. Where the vast resources invested in OpenAI’s models might show
is in the ease with which one can extract formally satisfactory feedback from
6 For instance, Weaver [20], finds that only 18% of business and design students always
find the (human) feedback that they receive during their studies clear and easy to
read.
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gpt-3.5. While getting llama-2 to give feedback in the requested form required a
carefully engineered, rather long prompt, the prompt that was used to interact
with gpt-3.5 was short and ready in a matter of seconds.

Third, we wish to point out three limitations of our study. As the demo-
graphics in Sect. 3 show, the majority of our participants’ mother tongue is not
English, but rather German. While they all have to be able to take classes in
English, native speakers might perceive the usefulness of the feedback provided
differently. Note, however, that students across the world have to learn to write
academic texts in English as a second language. In these settings, our results are
directly applicable. The second limitation is inherent in the design of our study:
to make the results as comparable as possible, we pre-defined the texts that the
students used to interact with the tool. It is possible that using different texts
would lead to different results. However, by choosing three texts at random from
a well-respected argumentative writing dataset, we tried to keep this probability
as low as possible. Lastly, we wish to emphasize once more that the size and
scale of this study means that it can only offer preliminary results that have to
be confirmed in larger, more comprehensive settings.

Fig. 1. llama-2 vs. gpt-3.5 : perceived quality of argumentative feedback.

5 Conclusion

In this article, we have tested the capacities of an AI-based tool that is intended
to support and improve students’ argumentative writing skills. We have focused
on using two different LLMs to provide students with case-specific formative feed-
back to improve their argumentative texts. Our provisional findings are overall
very encouraging. Students perceive the quality, comprehensibility, and helpful-
ness of the feedback by the two LLMs as good or very good. We are particularly
encouraged by the fact that students rate the much smaller open-source LLM
llama-2 almost as highly as OpenAI’s gpt-3.5 (7.51 vs. 7.65 on a scale from 1
to 10). As a consequence, we plan to experiment with more flexible settings and
larger test groups to confirm our findings. Furthermore, as the field of LLMs
is evolving at an impressive pace, we would like to explore the promise of even
smaller and more efficient models to further reduce the carbon footprint of our
method.
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